

InterviewSolution
Saved Bookmarks
1. |
The points with position vectors `veca + vecb, veca-vecb and veca +k vecb` are collinear for all real values of k. |
Answer» Correct Answer - True Let position vectors of points A, B and C be `veca + vecb, veca - vecb and veca +kvecb`, respectively. Then `vec(AB) = (veca - vecb ) - (veca + vecb) = -2 vecb` Similarly, `vec(BC) = (veca + k vecb) - (veca - vecb) = (k+1)vecb` Clearly `vec(AB) "||" vec(BC) AA k in R` Hence, A, B and C are collinear `AA k inR` Therefore, the statement is true. |
|