InterviewSolution
Saved Bookmarks
| 1. |
The population p(t) at time t of a certain mouse species satisfies thedifferential equation `(d p(t)/(dt)=0. 5 p(t)-450`If `p(0)""=""850`, then the time at which the population becomes zero is(1) 2 ln 18 (2) ln9 (3) `1/2`In 18 (4) ln 18A. 2 ln 18B. ln 9C. `1/2` ln 18D. ln 18 |
|
Answer» Correct Answer - A We have, `2(dp(t))/(900-p(t))=-dt` Integrating, we get `-2"ln "(900-p(t))=-t+c` when `t=0, p(0)=850` `therefore -2" ln "(50/(900-p(t)))=-t` `therefore 900-p(t)=50e^(t//2)` Let `p(t_(1))=0` `therefore 0=900-50e^(t//2)` `therefore t_(1)=2` ln 18 |
|