1.

The potential energy U=3ax^(3)-2bx^(2). The force constant is represented by

Answer»

8b
6b
4B
2b.

Solution :GIVEN, potential energy `U=3ax^(3) - 2 bx^(2)`.
We know force constant, `k=(d^2 U)/(dx^2)`
`THEREFORE (dU)/(dx)= 9ax^(2) - 4 bx`.
At EQUILIBRIUM, `(dU)/(dx)=0`
`therefore 9ax^(2) - 4 bx =0` or `x=(4b)/(9a)`.
`therefore (d^2 U)/(dx^2)=18 ax-4b`. At `x=4b//9a`.
`k=(d^2 U)/(dx^2) = (18a xx 4b)/(9a) - 4b-=4b`.


Discussion

No Comment Found

Related InterviewSolutions