1.

The potential energy W of a system of two atoms A and B varies as a function of their distance of separation r as folllows W = -(A)/(r^(n)) + (B)/(r^(m)) where A' and B' are characteristie constant independent of r. The bond distance between A and B that is d_(A -B) is given by :

Answer»

`d_(A - B) = ((mB')/(nA'))^(1//m - n)`
`d_(A - B) = ((nA')/(mB'))^(1//m - n)`
`d_(A - B) = (mB')/(nA')`
`d_(A - B ) = ((mB')/(nA'))^(m//n)`

Solution :`F = (d P. E.)/(DR) = 0`
`RARR (d)/(dr) ((-A')/(R^(n)) + (B')/(r^(m))) = 0`
`rArr (- (-n) A')/(r^(n + 1)) + ((-m)B')/(r^(m + 1)) = 0`
`rArr (nA')/(r^(n +1)) = (mB')/(r^(m + 1))`
`rArr (r^(m + 1))/(r^(n + 1)) = (mB')/(nA')`
`r^(m - n) = (m)/(n) (B')/(A')`
`d_(A - B) = r = ((mB')/(nA'))^(1//m - n)`


Discussion

No Comment Found