Saved Bookmarks
| 1. |
The potential energy W of a system of two atoms A and B varies as a function of their distance of separation r as folllows W = -(A)/(r^(n)) + (B)/(r^(m)) where A' and B' are characteristie constant independent of r. The bond dissociation energy of A - B bond, D_(A - B) is given by |
|
Answer» `D_(A - B) = (A')/(r^(n)) (1 - (n)/(m))` `D_(A - B) = 0 -((-A')/(r^(n)) + (B')/(r^(m)))` `= (A')/(r^(n)) - (B')/(r^(m))` As, `(d_(P. E.))/(DR) = 0` `RARR (r^(m + 1))/(r^(n + 1)) = (m)/(n) (B')/(A') rArr B' = (r^(m + 1))/(r^(n + 1)) . (n)/(m).A'` `D_(A - B) = (A')/(r^(n)) - (A')/(r^(m)) ((r^(m + 1))/(r^(n + 1)) . (n)/(m))` `rArr (A')/(r^(n)) (1 - (n)/(m).(r^(m).r)/(r^(m).r))` `rArr (A')/(r^(n)) (1 - (n)/(m))` |
|