1.

The potential energy W of a system of two atoms A and B varies as a function of their distance of separation r as folllows W = -(A)/(r^(n)) + (B)/(r^(m)) where A' and B' are characteristie constant independent of r. The bond dissociation energy of A - B bond, D_(A - B) is given by

Answer»

`D_(A - B) = (A')/(r^(n)) (1 - (n)/(m))`
`D_(A - B) = (A')/(r^(m)) (1 - (n)/(m))`
`D_(A - B) = (A')/(r^(n)) ((n)/(m) - 1)`
`D_(A - B) = (n)/(m)`

Solution :`r_(oo)- r_(P E) = D_(A - B)`
`D_(A - B) = 0 -((-A')/(r^(n)) + (B')/(r^(m)))`
`= (A')/(r^(n)) - (B')/(r^(m))`
As, `(d_(P. E.))/(DR) = 0`
`RARR (r^(m + 1))/(r^(n + 1)) = (m)/(n) (B')/(A') rArr B' = (r^(m + 1))/(r^(n + 1)) . (n)/(m).A'`
`D_(A - B) = (A')/(r^(n)) - (A')/(r^(m)) ((r^(m + 1))/(r^(n + 1)) . (n)/(m))`
`rArr (A')/(r^(n)) (1 - (n)/(m).(r^(m).r)/(r^(m).r))`
`rArr (A')/(r^(n)) (1 - (n)/(m))`


Discussion

No Comment Found