1.

The rate constant for the first order decomposition of a certain reaction is described by the equation `log k (s^(-1)) = 14.34 - (1.25 xx 10^(4)K)/(T)` (a) What is the energy of activation for the reaction? (b) At what temperature will its half-life period be `256 min`?

Answer» Arrhenius equation is given by ,
`k = Ae^(-E_(a) //RT)`
`implies ` ln k = ln A `- (E_(a))/(RT)`
`implies` ln k = log A `-(E_(a))/(RT)`
`implies ` log k = log A `- (E_(a))/(2.303 RT) " " (i)`
The given equation is
log k = `14. 34 - 1.25 xx 10^(4) K//T " " (ii)`
From equation (i) and (ii) , we obtain
`(E_(a))/(2.303RT) = (1.25 xx 10^(4)K)/(T)`
`implies E_(a) = 1.25 xx 10^(4) K xx 2.303 xx R`
=` 1.25 xx 10^(4) K xx 2.303 xx 8.314 J K^(-1) mol^(-1)`
= `239339.3 J mol^(-1)` (approximately)
= `239. 34 kJ mol^(-1)`
Also , when `t_(1//2)` = 256 minutes
`k = (0.693)/(t_((1)/(2)))`
= `(0.693)/(256)`
= `2.707 xx 10^(-3) "min"^(-1)`
=`4.51 xx 10^(-5) s^(-1)`
It is also given that log k = `14.34 - 1.25 xx 10^(4) K//T`
`implies` log `(4.51 xx 10^(-5)) = 14.34 - (1.25 xx 10^(4)K)/(T)`
`implies "log" (0.654 - 05) = 14.34 - (1.25 xx 10^(4)K)/(T)`
`implies (1.25 xx 10^(4)K)/(T) = 18. 686`
`implies T = (1.25 xx 10^(4) K)/(18.686)`
= 668. 85 K
= 669 K (approximately)


Discussion

No Comment Found

Related InterviewSolutions