Saved Bookmarks
| 1. |
The rate constants of a reaction at 500 K and 700 K are 0.02s^(-1)" and "0.07s^(-1) respectively. Calculate the values of E_(a) and A. |
|
Answer» SOLUTION :`log""(k_(2))/(k_(1))=(E_(a))/(2.303"R")((T_(2)-T_(1))/(T_(1)T_(2)))` `log""(0.07)/(0.02)=(E_(a))/(2.303xx8.314" JK"^(-1)MOL^(-1))xx(700"K"-500"K")/(700"K"xx500"K")`, `log3.5=(E_(a))/(2.303xx8.314" JK"^(-1)mol^(-1))xx(200"K")/(700"K"xx500"K")` or `""E_(a)=(0.5441xx2.303xx8.314xx700xx500)/(200)"J mol"^(-1)=18231.4" J mok"^(-1)=18.23" kJ mol"^(-1)` Further, `logk=-(E_(a))/(2.303"R")+LOGA" or"logA=logk+(E_(a))/(2.303"RT")` Substituting `T=500 K, k=0.02s^(-1)`, we get `logA=log0.02+(18231.4" J mol"^(-1))/(2.303xx8.314"JK"^(-1)mol^(-1)xx500"K")=-log50+12.4095=-1.699+1.904=0.205` `A=" Antilog "(0.205)=1.603` |
|