1.

The ratio of the A.M. and G.M. of two positive numbers a and b, is m : n. Show that a : b = `(m+sqrt(m^2-n^2)):(m-sqrt(m^2-n^2))`.

Answer» Here, we are given,`((a+b)/2)/sqrt(ab) = m/n`
`=>(a+b)/(2sqrt(ab)) = m/n->(1)`
Squaring both sides,
`=>((a+b)^2)/(4ab) = m^2/n^2`
`=>((a+b)^2-4ab)/(4ab) = (m^2-n^2)/n^2`
`=>((a-b)^2)/(4ab) = (m^2-n^2)/n^2`
`=>(a-b)/(2sqrt(ab)) = sqrt(m^2-n^2)/n->(2)`
Adding (1) and (2),
`(2a)/(2sqrt(ab)) = (m+sqrt(m^2-n^2))/n ->(3)`
Subtracting (2) from (1),
`(2b)/(2sqrt(ab)) = (m-sqrt(m^2-n^2))/n ->(4)`
Dividing (3) by (4),
`a/b = (m+sqrt(m^2-n^2))/ (m-sqrt(m^2-n^2))`
So, `a:b = (m+sqrt(m^2-n^2)) : (m-sqrt(m^2-n^2))`


Discussion

No Comment Found

Related InterviewSolutions