

InterviewSolution
Saved Bookmarks
1. |
The relation between the internal energy `U` adiabatic constant `gamma` isA. `U = (PV)/(gamma -1)`B. `U = (PV^(gamma))/(gamma -1)`C. `U = (PV)/(gamma)`D. `U = (gamma)/(PV)` |
Answer» Correct Answer - A a. Change in internal energy `Delta U = mu C_(v) Delta T implies U_(2) - U_(1) = mu C_(v) (T_(2) - T_(1))` Let initially `T_(1) = 0` so `U_(1) = 0` and finally `T_(2) = T` and `U_(2) = U` `U = mu C_(v) T = mu T xx C_(v) = (PV)/(R ) xx (R )/(gamma - 1) = (PV)/(gamma - 1)` (As `PV = mu RT, :. mu T = PV//R` and `C_(v) = R//(gamma - 1))` |
|