

InterviewSolution
Saved Bookmarks
1. |
The sequence \(\sqrt{3}, \sqrt{3\sqrt{3}},\sqrt{3\sqrt{3}\sqrt{3}},...\)converges to1. 12. 23. 34. none of these |
Answer» Correct Answer - Option 3 : 3 Concept: If p is any real number such that p > 1, then the sequence \(\sqrt{3}, \sqrt{p\sqrt{p}},\sqrt{p\sqrt{p}\sqrt{p}},...\)converges to p. Calculation: Given sequence \(\sqrt{3}, \sqrt{3\sqrt{3}},\sqrt{3\sqrt{3}\sqrt{3}},...\) from the above statement, we can say that the given sequence converges to 3. |
|