1.

The sequence \(\sqrt{3}, \sqrt{3\sqrt{3}},\sqrt{3\sqrt{3}\sqrt{3}},...\)converges to1. 12. 23. 34. none of these

Answer» Correct Answer - Option 3 : 3

Concept:

If p is any real number such that p > 1, then the sequence \(\sqrt{3}, \sqrt{p\sqrt{p}},\sqrt{p\sqrt{p}\sqrt{p}},...\)converges to p.

Calculation:

Given sequence \(\sqrt{3}, \sqrt{3\sqrt{3}},\sqrt{3\sqrt{3}\sqrt{3}},...\)

from the above statement, we can say that the given sequence converges to 3.



Discussion

No Comment Found

Related InterviewSolutions