InterviewSolution
Saved Bookmarks
| 1. |
The solution of differential equation `(dy)/(dx)=(1+y^(2))/(1+x^(2))"is"`A. `y=tan^(-1)x`B. `y=x=k(1+xy)`C. `x=tan^(-1)y`D. `tan(xy)=k` |
|
Answer» Given that, `" "(dy)/(dx)=(1+y^(2))/(1+x^(2))` `rArr" "(dy)/(1+y^(2))=(dx)/(1+x^(2))` On integrating both sides, we get `" "tan^(-1)y=tan^(-1)x+C` `rArr" "tan^(-1)y-tan^(-1)x=C` `rArr" "tan^(-1)((y-x)/(1+xy))=C` `rArr" "(y-x)/(1+xy)=tanC` `rArr" "y-x=tanc(1+xy)` `rArr" "y-x=K(1+xy)` where, `" "k=tanC` |
|