InterviewSolution
Saved Bookmarks
| 1. |
The solution of differential equation `(dy)/(dx)+(y)/(x)=sin x` isA. `x(y+cos x)=sin x+C`B. `x(y-cos x)=sin x+C`C. `xy cos x=sin x+C`D. `x(y+cosx)=cos +C` |
|
Answer» Given differential equation is `(Dy)/(dx+y(1)/(x)=sinx` which is linear differential equation. Here, `P=(1)/(x)and Q=sin x` `therefore IF=e^(int(1)/(x)dx)=e^(logx)=x` The general solution is `y.x.=intx.sin xdx+C` `"Take" I=intx sin xdx` `-x cos x -f -cos xdx` `-x cos x+sin x` Put the value l in Eq. (i), we get `xy=-x cos x+sin x+C` `Rightarrow x(y+cos x)=sin x+C` |
|