1.

The solution of differential equation `xdx+ydy=a(x^(2)+y^(2))dy`,isA. `x^(2)+y^(2)=Ce^(ay)`B. `x^(2)+y^(2)=Ce^(2ay)`C. `x^(@)+y^(2)=e^(2Cay)`D. none of these

Answer» Correct Answer - B
We have,
`xdx+ydy=a(x^(2)+y^(2))dy`
`rArr" "(2xdx+2ydy)/(x^(2)+y^(2))=2adyrArr(d(x^(2)+y^(2)))/(x^(2)+y^(2))=2ady`
On integrating, we obtain
`log(x^(2)+y^(2))=2ay+logC`
`rArr" "x^(2)+y^(2)=Ce^(2ay)` is the required solution.


Discussion

No Comment Found

Related InterviewSolutions