1.

The solution of differential equations sec2 y ​

Answer»

iven, sec  2 x⋅tanydx+sec  2 y⋅tanxdy=0 On separating the varaibales, we get ⇒sec  2 x⋅tanydx=−sec  2 y⋅tanxdy ⇒  TANX sec  2 x ​   DX=−  TANY sec  2 y ​   dy On integration both the SIDES, we get ∫  tanx sec  2 x ​   dx=−∫  tany sec  2 y ​   dy Let tanx=u⇒sec  2 x=  dx DU ​     ⇒dx=  sec  2 x du ​    and tany=v ⇒sec  2 y=  dy dv ​     ⇒dy=  sec  2 y dv ​     ∴∫  u sec  2 x ​   ⋅  sec  2 x du ​   =−∫  v sec  2 y ​   ⋅  sec  2 y dv ​     ⇒∫  u du ​   =∫  v dv ​     ⇒log∣u∣=−log∣v∣+log∣C∣ ⇒log∣tanx∣=−log∣tany∣+log∣C∣ ⇒log∣tanx⋅tany∣=log∣C∣ (∵logm+logn=logmn) (∵Step-by-step explanation:



Discussion

No Comment Found

Related InterviewSolutions