1.

The solution of `(dy)/(dx)=(x^2+y^2+1)/(2x y)`satisfying `y(1)=1`is given by(a) a system of parabolas(b) a system of circles(c)`( d ) (e) (f) y^(( g )2( h ))( i )=x(( j ) (k)1+x (l))-1( m )`(n)(d) `( o ) (p) (q) (r)(( s ) (t) x-2( u ))^(( v )2( w ))( x )+( y ) (z)(( a a ) (bb) y-3( c c ))^(( d d )2( e e ))( f f )=5( g g )`(hh)A. a hyperbolaB. a circleC. `y^(2)=x(1+x)-10`D. `(x-2)^(2)+(y-3)^(2)=5`

Answer» Correct Answer - A
We have,
`(dy)/(dx)=(x^(2)+y^(2)+1)/(2xy)`
`rArr" "2xy dy=(x^(2)+y^(2)+1)dx`
`rArr" "2xydy-y^(2)dx=(x^(2)+1)dx`
`rArr" "xd(y^(2))-y^(2)dx=(x^(2)+1)dx`
`rArr" "(xd(y^(2))-y^(2)dx)/(x^(2))=(1+(1)/(x^(2)))dx`
`rArr" "d((y^(2))/(x))=d(x-(1)/(x))`
On integrating, we get
`(y^(2))/(x)=x-(1)/(x)+C`
`rArr" "y^(2)=x^(2)-1+Cx rArr y^(2)=(x+(C)/(2))^(2)-1-(C^(2))/(4)`
Clearly, it represents a hyperbola.


Discussion

No Comment Found

Related InterviewSolutions