InterviewSolution
Saved Bookmarks
| 1. |
The solution of `(dy)/(dx)-y=1, y(0)=1` is given byA. `xy=-e^(x)`B. `xy=-e^(-x)`C. `xy=-1`D. `y=2e^(x)-1` |
|
Answer» Given that, `" "(dy)/(dx)-y=1` `rArr" "(dy)/(dx)=1+y` `rArr" "(dy)/(1+y)=dx` On integrating both sides, we get `" "log(1+y)=x+C" "`...(i) when x=0 and y=1, then `" "log2=0+c` `rArr" "C=log2` The required solution is `" "log(1+y)=x+log2` `rArr" "log((1+y)/(2))=x` `rArr" "(1+y)/(2)=e^(x)` `rArr" "1+y=2e^(x)` k `rArr" "y=2e^(x)-1` |
|