1.

The solution of the DE \(\frac{dy}{dx}\) = ex+y isA. ex + ey = cB. ex - e-y = cC. ex + e-y = cD. None of these

Answer»

Given, \(\frac{dy}{dx}\) = ex+y

\(\frac{dy}{dx}\) = exey

e-y dy = ex dx

On integrating on both sides, we get

 - e-y + c1 ex +c2

e-y + ex = c

Conclusion: Therefore, e-y + ex = c is the solution of \(\frac{dy}{dx} \) ex+y



Discussion

No Comment Found