1.

The solution of the differential equation `(x+y)(dx-dy)=dx+dy`, isA. `x-y=ke^(x-y)`B. `x+y=ke^(x+y)`C. `x+y=k(x-y)`D. `x+y=ke^(x-y)`

Answer» Correct Answer - D
We have,
`(x+y)(dx-dy)=dx+dy`
`rArr" "dx-dy=(dx+dy)/(x+y)`
`rArr" "d(x-y)=(d(x+y))/(x+y)`
`rArr" "x-y=log(x+y)+logC" [On integrating]"`
`rArr" "c(x+y)=e^(x-y)`
`rArr" "x+y=ke^(x-y)," where k"=(1)/(C)`


Discussion

No Comment Found

Related InterviewSolutions