InterviewSolution
Saved Bookmarks
| 1. |
The solution set of the inequation `(|x+3|+x)/(x+2) gt 1`, isA. `(-5, -2) cup (-1, oo)`B. `(-5, -2)`C. `(-1, oo)`D. none of these |
|
Answer» Correct Answer - A We have `(|x+3|+x)/(x+2) gt 1` `rArr (|x+3|+x)/(x+2)-1 gt 0` `rArr (|x+3|+x-x-2)/(x+2) gt 0 rArr (|x+3|-2)/(x+2) gt 0` Now two cases arise. CASE I When `x + 3 ge 0 i.e. x ge -3` In this case, we have `|x+3| = x+3` `therefore (|x+3|-2)/(x+2) gt 0` `rArr (x+3-2)/(x+2) gt 0` `rArr (x+1)/(x+2) gt 0 rArr x in (-oo, -2) cup(-1, oo)` But `x ge -3.` ` therefore x in [-3, -2) cup (-1, oo)` CASE II When `x + 3 lt 0 i.e. x lt -3` In this case, we have `|x + 3| = -(x+3)` `therefore(|x+3|-2)/(x+2) gt 0` `rArr (-(x+3)-2)/(x+2) gt 0` `rArr (-x-5)/(x+2) gt 0 rArr (x+5)/(x+2) lt 0 rArr -5 lt x lt -2` But ` x lt -3. "So," x in (-5, -3)`. Hence, the solution set of the given inequation is `(-5, -2)cup (-1, oo)` |
|