1.

The solution the differential equation `"cos x sin y dx" + "sin x cos y dy" =0` isA. `(sin x)/(sin y)=C`B. `sin x sin y =C`C. `sin x+sin y =C`D. `cos x cos y =C`

Answer» Given differential equation is
`cos x sin ydx+ sin x cos ydy=0`
`Rightarrow (cos x)/(sinx )dx=(cos y)/(sin y)dy`
`Rightarrow cot x dx=-cot ydy`
On integrating both sides, we get
`log sin x=-log sin y+log C`
`Rightarrow log sin x siny=logC`
`Rightarrow sinx. siny=C`


Discussion

No Comment Found

Related InterviewSolutions