InterviewSolution
Saved Bookmarks
| 1. |
The solution the differential equation `"cos x sin y dx" + "sin x cos y dy" =0` isA. `(sin x)/(sin y)=C`B. `sin x sin y =C`C. `sin x+sin y =C`D. `cos x cos y =C` |
|
Answer» Given differential equation is `cos x sin ydx+ sin x cos ydy=0` `Rightarrow (cos x)/(sinx )dx=(cos y)/(sin y)dy` `Rightarrow cot x dx=-cot ydy` On integrating both sides, we get `log sin x=-log sin y+log C` `Rightarrow log sin x siny=logC` `Rightarrow sinx. siny=C` |
|