InterviewSolution
Saved Bookmarks
| 1. |
The sum of all `x in [0,pi]` which satisfy the equation sin `x+(1)/(2)cos x =sin^(2)(x+(pi)/(4))` is -(A) ` pi/6 ` (B) ` (5pi)/6 ` (C) ` pi ` (D) `2pi `A. `(pi)/(4)`B. `(5pi)/(6)`C. `pi`D. `2pi` |
|
Answer» Correct Answer - C `sin x +(1)/(2)cos x=sin^(2)(x+(pi)/(4))` `sin x+(1)/(2)cos x =(1)/(2)(1-cos((pi)/(2)+2x))` `sin x+(1)/(2)co x =(1)/(2)(1+sin 2x)` `2 sin x +cos x = 1+sin x cos x` `2 sin x cos x -2 sin x (1-cos x)=0` `(1-cos x)-2 sin x(1-cos x)=0` `(1-cos x)(1-2 sin x) = 0` `1-cos x =0" "1-2sin x= 0` `cos x =1" "sin x =(1)/(2)` `x=0," "x=(pi)/(6),(5pi)/(6)` sum `=0+(pi)/(6)+(5pi)/(6)=pi` |
|