InterviewSolution
| 1. |
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 192. The common ratio of the original G.P. is A. 1/2 B. 2/3 C. 1/3D. −1/2 |
|
Answer» Correct answer is D -1/2 Let, the first term of G.P. is a and common ratio is r. We know that common ratio of infinite G.P. is belongs to [0, 1) G.P. ⇒ a, ar, ar2, …… Sum of infinite terms of G.P. = \(\frac{a}{1-r} = 4\) ⇒ a = 4(1 – r) Cubic terms of a G.P. ⇒ a3, a3r3, a3r6, …… Sum of cubes of terms = \(\frac{a^3}{1-r^3}\) = 192 ⇒ a3 = 192(1 – r3) ⇒ 43(1 – r)3 = 92(1 – r3) ⇒ (1 – r)3 = 3(1 – r)(1 + r + r2) Case I : 1 – r = 0 ⇒ r = 1 (not possible) Case II : (1 – r)2 = 3(1 + r + r2) ⇒ 2r2 + 5r + 2 = 0 ⇒ (2r + 1)(r + 2) = 0 ⇒ r = -2 (not possible) and r = -1/2 So, common ratio of original G.P. is -1/2 |
|