1.

The sum of series `sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(50))/7++sec^(-1)sqrt(((n^2+1)(n^2-2n+2))/((n^2-n+1)^2))`is`tan^(-1)1`(b) `n``tan^(-1)(n+1)`(d) `tan^(-1)(n-1)`

Answer» Let `S = sec^-1sqrt2+sec^-1(sqrt10/3)+sec^-1(sqrt50/7)+...+sec^-1sqrt(((n^2+1)(n^2-2n+2))/(n^2-n+1)^2)`
Here, `T_n = sec^-1sqrt(((n^2+1)(n^2-2n+2))/(n^2-n+1)^2)`
Let `sec^-1sqrt(((n^2+1)(n^2-2n+2))/(n^2-n+1)^2) = theta`
`=>sec theta =sqrt(((n^2+1)(n^2-2n+2))/(n^2-n+1)^2`
`=>sec^2theta = ((n^2+1)(n^2-2n+2))/(n^2-n+1)^2`
`=>sec^2theta = ((n^2+1)(n^2+1-2n+1))/(n^2-n+1)^2`
`=>1+tan^2theta = ((n^2+1)(n^2+1)-2n(n^2+1)+n^2+1)/(n^2-n+1)^2`
`=>1+tan^2theta = ((n^2+1-n)^2+1)/(n^2-n+1)^2`
`=>1+tan^2theta = 1+1/(n^2+1-n)^2`
`=>tan^2theta = 1/(n^2+1-n)^2`
`=>tan theta = 1/(1+n^2-n) = (n - (n-1))/(1+n(n-1))`
`=>theta = tan^-1((n - (n-1))/(1+n(n-1)))`
`=>theta = tan^-1(n) - tan^-1(n-1)`
`:. T_n =tan^-1(n) - tan^-1(n-1)`
Now, `S = tan^-1(1) - tan^-1(0) + tan^-1(2) - tan^-1(1)+tan^-1(3) - tan^-1(2)+...+tan^-1(n) - tan^-1(n-1)`
`=>S = tan^-1(n) - tan^-1(0)`
`=>S = tan^-1(n) - 0`
`=>S = tan^-1(n)`


Discussion

No Comment Found