1.

The sum of the digits of a two-digit number is 15. On subtracting 27 from the given number its digits get reversed. Find the given number.​

Answer»

Answer:

The required two-digit NUMBER is 96.

Step-by-step-explanation:

Let the digit at the TENS place be x.

And the digit at the units place be y.

∴ The original number = 10X + y

And the number obtained by interchanging the digits = 10y + x

From the first condition,

x + y = 15

⇒ x = 15 - y

⇒ x = - y + 15 - - ( 1 )

From the second condition,

10x + y - 27 = 10y + x

⇒ 10x + y - 10y - x = 27

⇒ 9x - 9y = 27

⇒ x - y = 3 - - [ Dividing both sides by 9 ]

⇒ ( - y + 15 ) - y = 3 - - - [ From ( 1 ) ]

⇒ - y + 15 - y = 3

⇒ - y - y = 3 - 15

⇒ - 2y = - 12

⇒ 2y = 12

⇒ y = 12 ÷ 2

y = 6

By substituting y = 6 in equation ( 1 ), we get,

x = - y + 15 - - ( 1 )

⇒ x = - 6 + 15

x = 9

Now,

The original number = 10x + y

⇒ The original number = 10 × 9 + 6

⇒ The original number = 90 + 6

∴ The original number = 96

The required two-digit number is 96.



Discussion

No Comment Found

Related InterviewSolutions