1.

The sum of three consecutive numbers is 63. Find the numbers.​

Answer»

Correct Question

\:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:   \:  \:  \bullet The SUM of three CONSECUTIVE numbers is 63. Find the numbers.

To Find

\:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:   \:  \:  \bullet To find that the other three consecutive numbers.

Given

\:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:   \:  \:  \bullet GIVEN that is Sum of three consecutive numbers = 63.

Solution

Let,

  • First number be x
  • Second number be x + 2
  • Third number be x + 4

According to the question,

\longmapsto \sf{x  + (x + 2) + (x + 4)}  = 63

REMOVING the brackets,

\longmapsto \sf{x  + x + 2 + x + 4}  = 63

\longmapsto \sf{3x+ 6}  = 63

\longmapsto \sf{3x \: = 63 - 6}

\longmapsto \sf{3x \: = 57}

\longmapsto \sf{x \: =    \large{\cancel\frac{57}{3}}}

\longmapsto \sf{x \: = 19}

Therefore,The value of x is 19.

So,

\:\:\:\:\:\:\:\:\sf{x \implies \:19 }

\sf{x + 2  \implies \:19 + 2 = 21}

\sf{x + 4  \implies \:19 + 4 = 23}

THUS,The other three consecutive number is 19,21,23.

___________________________________



Discussion

No Comment Found

Related InterviewSolutions