InterviewSolution
Saved Bookmarks
| 1. |
The total number of ordered pairs `(x , y)`satisfying `|x|+|y|=2,sin((pix^2)/3)=1,`is equal to2 (b) 3(c) 4 (d)6A. 2B. 3C. 4D. 6 |
|
Answer» Correct Answer - C `|x|+|y|=2, sin ((pi x^(2))/3)=1` `rArr |x|, |y| in [0, 2], (pi x^(2))/3=(4n+1) pi/2, n in Z` `rArr x^(2)=(3(4n+1))/2=3/2`, as `|x| le 2` `rArr |a|=sqrt(3/2), |y|=4-sqrt(3/2)` Thus, there are four ordered pairs. |
|