InterviewSolution
Saved Bookmarks
| 1. |
The value of \(\arctan \left( {1/\sqrt 3 } \right) + \operatorname{arcsec} \left( { - 2} \right)\) is:1. \(\frac{\pi }{2}\)2. \( \frac {5\pi}{6} \)3. \(- \frac{\pi }{2}\)4. 0 |
|
Answer» Correct Answer - Option 2 : \( \frac {5\pi}{6} \) Concept: \(\arctan x = y ⇒ x = \tan y\) Calculation: Here, we have to find the value of \(\arctan \left( {1/\sqrt 3 } \right) + \operatorname{arcsec} \left( { - 2} \right)\) \(\tan x = \frac{1}{{\sqrt 3 }}\) ⇒ \(x = \frac{\pi }{6}\) Also, \(\sec y = -2\) ⇒ \(y = \frac{2\pi }{3}\) So, \(\arctan \left( {1/\sqrt 3 } \right) + {\mathop{\rm arcsec}\nolimits} \left( { - 2} \right) = x + y\) \(= \frac{\pi }{6} + \frac{2\pi }{3}\) \(= \frac{\pi+4\pi}{6} = \frac {5\pi}{6} \) |
|