1.

The value of `[C(7, 0)+C(7, 1)] + [C(7, 1) + C(7, 2)]+ ... + [C(7, 6) + C(7, 7)]`A. 254B. 255C. 256D. 257

Answer» Correct Answer - A
`(7_(c_(0)+7_(c_(1))))+(7_(c_(1)+7_(c_(2))))+...+(7_(c_(6)+7_(c_(7))))`
We know, `n_(c_(r))+n_(c_(r-1))=.^(n+1)C_(r)`
`=8_(c_(1))+8_(c_(2))+...+8_(c_(7))`
`=(8_(c_(0))+8_(c_(1))+8_(c_(2))+....+8_(c_(7))+8_(c_(8)))-(8_(c_(0))+8_(c_(8)))=2^(8)-(1+1)`
`["Since", n_(c_(0))+ n_(c_(1))+ n_(c_(2))+...+ n_(c_(n))=2^(n)]`
= 256 - 2
= 254


Discussion

No Comment Found