InterviewSolution
| 1. |
The value of \(\frac{{{{\sin }^2}{}52^\circ + 2 + {{\sin }^2}{{ }}38^\circ }}{{4{}{{\cos }^2}43^\circ - 5 + 4{{\cos }^2}{{}}47^\circ }}\) is:1. \(\frac{1}{3}\)2. - 33. 34. \(-\frac{1}{3}\) |
|
Answer» Correct Answer - Option 2 : - 3 Given: \(\frac{{{{\sin }^2}{}52^\circ + 2 + {{\sin }^2}{{ }}38^\circ }}{{4{}{{\cos }^2}43^\circ - 5 + 4{{\cos }^2}{{}}47^\circ }}\) Identity used: Sin θ = cos(90 - θ) Sin2 θ + cos2 θ = 1 Calculation: \(\frac{{{{\sin }^2}{}52^\circ + 2 + {{\sin }^2}{{ }}38^\circ }}{{4{}{{\cos }^2}43^\circ - 5 + 4{{\cos }^2}{{}}47^\circ }}\) using Sin θ = cos(90 - θ) ⇒ \(\frac{{si{n^2}52^\circ \; + \;2\; + \;si{n^2}\left( {90 - 52} \right)^\circ }}{{4co{s^2}43^\circ - 5\; + \;co{s^2}\left( {90\; - 43} \right)^\circ }}\) ⇒ \(\frac{{si{n^2}52^\circ \; + \;2\; + \;co{s^2}52^\circ }}{{4co{s^2}43^\circ - 5\; + \;si{n^2}43^\circ }}\) Applying Sin2 θ + cos2 θ = 1 ⇒ (1 + 2)/(4 - 5) ⇒ -3 ∴ The value of \(\frac{{{{\sin }^2}{}52^\circ + 2 + {{\sin }^2}{{ }}38^\circ }}{{4{}{{\cos }^2}43^\circ - 5 + 4{{\cos }^2}{{}}47^\circ }}\) is -3. |
|