1.

The value of `(lim_(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log(1+5x))/(e^(3root5x)-1)` isA. `(3)/(5)`B. `(5)/(3)`C. 1D. none of these

Answer» Correct Answer - B
`L=underset(xrarr0^(+))(lim)(tanx^((1)/(5)))/(tan^(-1)sqrtx)(log(1+5x))/((e^(3root5x)-1))`
`=underset(xrarr0^(+))(lim)(tan(x^((1)/(5))))/(x^((1)/(5))).x^((1)/(5))((sqrtx)/(tan^(-1)sqrtx))^(2).(1)/(x).5x.((log(1+5x))/(5x))/(((e^(3.x^((1)/(5)))-1)/(3x^((1)/(5)))).3x^((1)/(5)))`
`=1.1.(loge)/(1).(5)/(3)=(5)/(3)`


Discussion

No Comment Found