InterviewSolution
Saved Bookmarks
| 1. |
The value of `lim_(xrarr oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+....nx^(1//n))/((2x-3)^(1//2)+(2x-3)^(1//3)+....+(2x-3)^(1//n))`is |
|
Answer» Correct Answer - C Let `l=lim_(xto oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+....+nx^(1//n))/((2x-3)^(1//2)+(2x-3)^(1//3)+....+(2x-3)^(1//n))` Then, , `l=lim_(xto oo)(2h^(-1//2)+3h^(-1//3)+4h^(-1//4)+....+nx^(-1//n))/((2-3h)^(1//2)+(h)^(-1//2)+(2-3h)^(1//3)+h^(-1//3)....+(2-3h)^(1//n)h^(-1//n)) "where" h=(1)/(x)` `rArrl=lim_(hto0)(2+3h^(((1)/(2)-(1)/(3)))+4h^(((1)/(2)-(1)/(4)))+.....+nh^(((1)/(2)-(1)/(n))))/((2-3h)^(1/2)+(2-3h)^(1/3)+h^(((1)/(2)-(1)/(4)))+....+(2-3h)^(1/n)h^(((1)/(2)-1/n)))` `rArr l=(2)/(sqrt(2))=sqrt(2)` |
|