InterviewSolution
Saved Bookmarks
| 1. |
The value of `lim_(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "` |
|
Answer» Correct Answer - A `underset(xto2)lim(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)` `underset(xto2)lim(1+sqrt(2+x)-3)/((sqrt(1+sqrt(2+x))+sqrt(3))(x-2))" "`(Rationalizing) `=underset(xto2)"lim"(sqrt(2+x)-2)/((sqrt(1+sqrt(2+x))+sqrt(3)")"(x-2)))` `=underset(xto2)"lim"((x-2))/("("sqrt(1+sqrt(2+x))+sqrt(3)")""("sqrt(2+x)+2")""("x-2")")` (Rationalizing) `=(1)/("("2sqrt(3")")4)=(1)/(8sqrt(3))` |
|