InterviewSolution
Saved Bookmarks
| 1. |
The value of `sum_(k=1)^(13) (1)/(sin((pi)/(4) + ((k-1)pi)/(6)) sin ((pi)/(4)+ (kpi)/(6)))` is equal toA. ` 3-sqrt3`B. `2(3-sqrt3)`C. `2(sqrt3-1)`D. `2(2+sqrt3)` |
|
Answer» Correct Answer - C `2 overset(13) underset(k=1) (sum) (sin((pi)/(6)))/(sin ((pi/(4) + ((k-1)pi)/(6)) sin ((pi)/(4) +(kpi)/(6))))` `" " = 2 sum (sin{((pi)/(4) + (kpi)/(6))- ((pi)/(4) + ((k-1)pi)/(6))})/(sin ((pi)/(4) + ((k-1)pi)/(6))* sin ((pi)/(4)+ (kpi)/(6)))` `" " = 2 overset(13)underset(k=1) (sum)(cot((pi)/(4)+ ((k-1)pi)/(6)) - cot ((pi)/(4)+ (k pi)/(6)))` `= 2[ cot ((pi)/(4)) - cot ((pi)/(4) + (13pi)/(6))]` `= 2[1-(2-sqrt3)]` `= 2 (sqrt3-1)` |
|