1.

The value of `sum_(n=0)^(1947) 1/(2^(n)+sqrt(2^(1947)))` is equal toA. `487/(sqrt(2^(1945)))`B. `1946/(sqrt(2^(1947)))`C. `1947/(sqrt(2^(1947)))`D. `1948/(sqrt(2^(1947)))`

Answer» Correct Answer - A
`underset(n=0)overset(1947)sum1/(2^(n)+sqrt(2^(1947)))" Total terms "=1948`
`T_(1)=1/(1+sqrt(2^(1947)))`
`T_(1948)=1/(2^(1947)+sqrt(2^(1947)))`
`T_(1)+T_(1948)=1/(sqrt(2^(1947)))`
Similarly, `T_(2)+T_(1947)=1/(sqrt(2^(1947)))=T_(3)+T_(1946)=" and so an".........`
`" Total"1948/2=974" pairs"`
`:." Sum"=974/sqrt(2^(1947))=974/(sqrt(4xx2^(1945)))=487/(sqrt(2^(1945)))`


Discussion

No Comment Found

Related InterviewSolutions