InterviewSolution
Saved Bookmarks
| 1. |
The value of `sum_(n=0)^(1947) 1/(2^(n)+sqrt(2^(1947)))` is equal toA. `487/(sqrt(2^(1945)))`B. `1946/(sqrt(2^(1947)))`C. `1947/(sqrt(2^(1947)))`D. `1948/(sqrt(2^(1947)))` |
|
Answer» Correct Answer - A `underset(n=0)overset(1947)sum1/(2^(n)+sqrt(2^(1947)))" Total terms "=1948` `T_(1)=1/(1+sqrt(2^(1947)))` `T_(1948)=1/(2^(1947)+sqrt(2^(1947)))` `T_(1)+T_(1948)=1/(sqrt(2^(1947)))` Similarly, `T_(2)+T_(1947)=1/(sqrt(2^(1947)))=T_(3)+T_(1946)=" and so an".........` `" Total"1948/2=974" pairs"` `:." Sum"=974/sqrt(2^(1947))=974/(sqrt(4xx2^(1945)))=487/(sqrt(2^(1945)))` |
|