1.

The value of `sum_(r=1)^(15) (r2^(r))/((r+2)!)` is equal toA. `((17)!-2^(16))/((17)!)`B. `((18)!2^(17))/((18)!)`C. `((16)!-2^(15))/((16)!)`D. `((15)!-2^(14))/((15)!)`

Answer» Correct Answer - A
`(rxx2^(r))/((r+2)!) = ((r+2-2)2^(r))/((r+2)!)`
`= (2^(r))/((r+1)!)-(2^(r+1))/((r+2)!)`
`= - ((2^(r+1))/((r+2)!)-(2^(r))/((r+1)!))`
`= -(V(r)-V(r-1))`
`rArr underset(r=1)overset(15)sum(rxx2)/((r+2)!)=-(V(15)-V(0))`
`= - ((2^(16))/(17!)-(2)/(2!))`
`= 1-(2^(16))/((17)!)`


Discussion

No Comment Found

Related InterviewSolutions