InterviewSolution
| 1. |
The value of tan θ + 2 tan 2θ + 4 tan 4θ + 8 cot 8θ is:1. cot θ 2. tan θ 3. sin θ 4. cos θ |
|
Answer» Correct Answer - Option 1 : cot θ Concept: Trigonometric Identities:
Calculation: Let us observe that: \(\rm \cot 2\theta=\dfrac{\cos 2\theta}{\sin2\theta}=\dfrac{\cos^2\theta-\sin^2\theta}{2\sin\theta\cos\theta}=\dfrac{1}{2}(\cot\theta-\tan\theta)\) ⇒ cot θ - tan θ = 2 cot 2θ ... (1) ⇒ tan θ = cot θ - 2 cot 2θ ... (2) Now, tan θ + 2 tan 2θ + 4 tan 4θ + 8 cot 8θ = (cot θ - 2 cot 2θ) + 2 tan 2θ + 4 tan 4θ + 8 cot 8θ ... Using equation (2) = cot θ - 2(cot 2θ - tan 2θ) + 4 tan 4θ + 8 cot 8θ = cot θ - 2(2 cot 4θ) + 4 tan 4θ + 8 cot 8θ ... Using equation (1) = cot θ - 4(cot 4θ - tan 4θ) + 8 cot 8θ = cot θ - 4(2 cot 8θ) + 8 cot 8θ ... Using equation (1) = cot θ - 8 cot 8θ + 8 cot 8θ = cot θ.
|
|