1.

The value of the integral `int_(-pi)^(pi)(cos^(2)x)/(1+a^(x))"dx"`, where `a gt 0`, is -(A) ` pi ` (B) ` api ` (C) ` pi/2 ` (D) ` 2pi `A. `pi`B. `api`C. `pi//2`D. `2pi`

Answer» Correct Answer - C
`I=int_(-pi)^(pi)(co^(2)x)/(1+a^(x))"dx…………(1) "int_(a)^(d)f(x)dx=int_(a)^(d)f(a+b-x)dx`
`I=int_(-pi)^(pi)(cos^(2)(-x))/(1+a^(-x))dx`
`I=int_(-pi)^(pi)(a^(x)cos^(2)x)/(1+a^(x))"dx………….(2)"`
add equation (1) and (2)
`2I=int_(-pi)^(pi)cos^(2)x((1)/(1+a^(2))+(a^(x))/(1+a^(x)))"dx"`
`I=int_(0)^(pi)cos^(2)"x dx = 2"int_(0)^(pi//2)cos^(2)"x dx"`
`=pi//2`


Discussion

No Comment Found

Related InterviewSolutions