InterviewSolution
Saved Bookmarks
| 1. |
The `x-t` graph of a particle undergoing simple harmonic motion is shown in figure. Acceleration of particle at `t = 4//3 s` is A. `(sqrt(3))/(32)pi^(2)cm//s^(2)`B. `(-pi^(2))/(32)cm//s^(2)`C. `(pi^(2))/(32)cm//s^(2)`D. `-(sqrt(3))/(32)pi^(2)cm//s^(2)` |
|
Answer» Correct Answer - D From graph `T = 8` second, `A = 1 cm, x = A sinomegat. = 1sin(2pi)/(8)t`. `a = -omega^(2)x = -((2pi)/(8))^(2) sin((2pi)/(8))t cm//s^(2)` At, `t = (4)/(3)` second, `a = -((2pi)/(8))^(2) sin"(pi)/(3) = - (sqrt(3) pi^(2))/(32) cm//s^(2)` |
|