1.

Thediagonals of a parallelogram `A B C D`intersectat `Odot`A linethrough `O`meets `A B `in `x a n d C D`in `Ydot`Show that`a r (A X Y X)=1/2(a r|""|^(gm) A B C D)`

Answer» Diagonal AC of ||gm ABCD divides it into two triangles of equal area.
`therefore ar(squareACD)=(1)/(2)ar("||"gm ABCD)" "...(i)`
In `triangle` OAP and OCQ, we have:
OA = OC (diagonals of a ||gm bisect each other)
`angleAOP=angleCOQ " "("vert. opp." angle)`
`angle PAO=angleQCO " " ("alt. interior " angle)`
`therefore triangle OAPcongtriangleOCQ.`
`therefore ar(triangleOAP)=ar(triangleOCQ)`
`rArr ar(triangleOAP)+ar("quad. AOQD")`
`=ar(triangleOCQ)+ar("quad. AOQD")`
`rArr ar("quad. APQD")=ar(triangleACD)`
`=(1)/(2)ar("||gm ABCD") " " ["using (i)"]`.
`therefore ar(squareAPQD)=(1)/(2)ar("||gm ABCD")`.


Discussion

No Comment Found