1.

Three numbers are in AP, and their sum is 15. If 1, 4, 19 be added to them respectively, then they are in GP. Find the numbers.

Answer»

To find: 

The numbers Given: 

Three numbers are in A.P. Their sum is 15 

Formula used: 

When a,b,c are in GP, b2 = ac 

Let the numbers be a - d, a, a + d 

According to first condition 

a + d + a +a – d = 15 

⇒ 3a = 15 

⇒ a = 5 

Hence numbers are 5 - d, 5, 5 + d 

When 1, 4, 19 be added to them respectively then the numbers become – 

5 – d + 1, 5 + 4, 5 + d + 19 

⇒ 6 – d, 9, 24 + d 

The above numbers are in GP 

Therefore, 92 = (6 – d) (24 + d) 

⇒ 81 = 144 – 24d +6d – d 2 

⇒ 81 = 144 – 18d – d 2 

⇒ d 2 + 18d – 63 = 0 

⇒ d 2 + 21d – 3d – 63 = 0 

⇒ d (d + 21) -3 (d + 21) = 0 

⇒ (d – 3) (d + 21) = 0 

⇒ d = 3, Or d = -21 

Taking d = 3, the numbers are 

5 - d, 5, 5 + d = 5 - 3, 5, 5 + 3 

= 2, 5, 8 

Taking d = -21, the numbers are 5 - d, 5, 5 + d = 5 – (-21), 5, 5 + (-21) 

= 26, 5, -16 

We have two sets of triplet as 2, 5, 8 and 26, 5, -16



Discussion

No Comment Found