1.

To investigate the beta-decay of Mg^(23) radionuclide, a counter was activated at moment t=0. It registered N_(1) beta-particles by a moment t_(1)= 2.0s, and by a moment t_(2)=3t_(1) the number of registered beta-particles was 2.66 times greater. Find the mean lifetime of the given nuclei.

Answer»

Solution :If `N_(0)` is the number of radionuclei present initially,then
`N_(1)=N_(0)(1-e^(-t_(1)//tau))`
`etaN_(1)=N_(0)(1-e^(-t_(2)//tau))`
where `eta=2.66` and `t_(2)= 3t_(1)`. Then
`eta=(1-e^(-t_(2)//tau))/(1-e^(-t_(1)//tau))`
or `eta-eta e^(-t_(1)//tau)= 1-e^(-t_(2)//tau)`
Substituting the VALUES
`1.66= 2.66e^(-2//tau)-e^(-6//tau)`
PUT `e^(-2//tau)=x`. Then
`x^(3)-2.66x+1.66=0`
`(x^(2)-1)x-1.66(x-1)=0`
or `(x-1)(x^(2)+x-1.66)=0`
Now `x~~1 so x^(2)+x- 1.66=0`
`x=(-1+-sqrt(1+4xx1.66))/(2)`
NEGATIVE sign has to be rejected as `xgt0`.
Thus `x= 0.882`
This gives `tau=(-2)/(In 0.882)= 15.9 sec`.


Discussion

No Comment Found

Related InterviewSolutions