1.

Topic - Arthematic Progression@ Moderators @ Stars @ Best Users The sum of 5th term and 7th term of an A.P is 52 and the 10 th term is 46. Find A.P?​

Answer»

♣ Given :-

For an A.P.

  • 5th TERM + 7th Term = 52

  • 10th Term = 46

-----------------------

♣ To FIND :-

  • The Corresponding A.P.

-----------------------

♣ Formula For nth Term :-

\large \mathtt{a_n= a + (n - 1)d}

Where :

  • a = First term

  • d = Common difference

-----------------------

♣ Solution -

We Have ,

\large \sf{a_{5} +a_{7} = 52}\\ \\ \large \sf{ = a + 4d + a + 6d= 52}\\ \\ \large \sf2a + 10d \: \: - - - (1)\\ \\ \large \sf{a_{11} = a + 10d = 46} \\ \\

♠ MULTIPLYING Both Sides by 2 :

\large :\longmapsto\sf 2a + 20d = 92\: \: - - - (2) \\

Subtracting (1) From (2) , We get :-

\sf10d = 40 \\ \\ \sf d = \cancel{\frac{40}{10} }\\ \\ \purple{ \Large :\longmapsto  \underline {\boxed{{\bf d = 4} }}}

♠ Putting Value of d in (1) :

:\longmapsto \sf2a + 10 \times 4 = 52 \\ \\ :\longmapsto \sf 2a = 12 \\ \\ :\longmapsto \sf a = \cancel\dfrac{12}{2} \\ \\ \purple{ \Large :\longmapsto  \underline {\boxed{{\bf a = 6} }}}

We Know ,

A.P. Having First Term a and common difference d is is of the Form :

a , a + d , a + 2d , . . . .

Hence ,

The Required A.P is :

\pink{\huge \mathfrak{6 , 10,14,\: . \: . \: .}}

\LARGE\red{\mathfrak{  \text{W}hich \:\:is\:\: the\:\: required} }\\ \Huge \red{\mathfrak{ \text{ A}nswer.}}

-----------------------



Discussion

No Comment Found

Related InterviewSolutions