Saved Bookmarks
| 1. |
triangle ABC is a right angled triangle with AB = 12cm and AC = 13cm. A circle with centre O has been inscribed inside the triangle. calculate the radius of the inscribed circle |
|
Answer» Step-by-step explanation: In △ABC, ⇒ ∠B=90 o [ Given ] ⇒ AB=12cm and AC=13cm [ Given ] Here, O is center of a circle and x is a radius. ⇒ (AC) =(AB) 2 +(BC) 2 [ By Pythagoras theorem ] ⇒ (13) 2 =(12) 2 +(BC) 2
⇒ 169=144+(BC) 2
⇒ (BC) 2 =25 ∴ BC=5cm Now, AB,BC and CA are tangents to the circle at P,N and M respectively. ∴ OP=ON=OM=x [ Radius of a circle ] ⇒ AREA of △ABC= 2 1
×BC×AB
= 2 1
×5×12 =30cm 2
Area of △ABC= Area of △OAB+ Area of △OBC+ Area of △OCA ⇒ 30= 2 1
x×AB+ 2 1
x×BC+ 2 1
x×CA ⇒ 30= 2 1
x(AB+BC+CA) ⇒ x= AB+BC+CA 2×30
⇒ x= 12+5+13 60
⇒ x= 30 60
∴ x=2cm |
|