1.

Two identical glass (mu_g=3/2) equiconvex lenses of focal length f each are kept in contact. The space between the two lenses is filled with water mu_w=4/3. The focal length of the combination is

Answer»

`(4f)/(3)`
`(3f)/(4)`
`F/3`
f

Solution :From lensmaker.s formula
In `1/f=(mu_g-1)((1)/(R_1)-(1)/(R_2)),R_1=R,R_2=-R`
`1/f=(mu_g-1)(2/R)`
`=(3/2-1)(2/R)`
`therefore 1/f=1/R`
`therefore 1/f=1/R`
`therefore f=R` … (1)

FOCAL length of concave lens of water,
In `(1)/(f.)=(mu_w-1)((1)/(R_1)-(1)/(R_2)),R_1=-R,R_2=R`
`(1)/(f.)=(4/3-1)(-2/R)`
`therefore (1)/(f.)=-(2)/(3R)`
`therefore f.=-(3f)/(2) [becauseR=f` given]
Now for lenses in contact EQUIVALENT focal length be f.
`1/F=1/f+(1)/(f.)+1/f`
`=2/f+(1)/(f.)`
`=2/f+(1)/(f.)`
`=(6-2)/(3f)`
`=(4)/(3f)`


Discussion

No Comment Found

Related InterviewSolutions