1.

Two identical sources of light are separated through a distance d = (lambda)/(8), where lambda is the wavelength of the waves emitted by either source. The phase difference of the sources is (pi)/(4).Intensitydistribution in the radiation field as a function of theta is :

Answer»

`4 I_(0) cos^(2)(pi)/(4)`
`4 I_(0) cos^(2)(pi)/(8)`
`4 I_(0)cos^(2)[(pi)/(8) sin theta]`
`4 I_(0) cos^(2) [(pi)/(8)(sin theta + 1)]`

Solution :Here`d = (lambda)/(8)`
The phase DIFFERENCE between the sources
`Delta phi= (pi)/(4)`
Also ` x = d sin theta`
`therefore phi = (2pi)/(lambda).x = (2pi)/(lambda) .(lambda)/(8) sin theta = (pi)/(4) sin theta`
`therefore` Total phase difference,
`phi= phi. + Deltaphi. = (pi)/(4) sin theta + (pi)/(4)`
or `phi = (pi)/(4)(sin theta + 1)`
`therefore` Required INTENSITY is
`I = 4I_(0) cos^(2)(phi)/(2)`
or `I = 4I_(0)cos^(2)[(pi)/(8)(sin theta + 1)]`


Discussion

No Comment Found

Related InterviewSolutions