1.

Two long coaxial and conducting cylinders of radius a and b are separated by a material of conductivity sigma and a constant potential difference V is maintained between them by a battery. Then the current per unit length of the cylinder flowing from one cylinder to the other is

Answer»

`(4pisigma)/(LN(b//a))V `
`(4pisigma)/(b//a) V`
`(2pisigma)/(ln(b//a)) V `
`(2pisigma)/(b+a) V`

Solution :C. `E = lambda//2 pi epsilon_0r'`, where`lambda` is the LINEAR CHARGE density of the inner
cylinder.
And `V = int_ (a)^(b) Edl = lambda/(2piepsilon_0) In (b/a)`
Now, `I = int vec(J).d vec(A) = sigma int vec(E ) * d vec (A)`
` = sigma int (lambda/(2piepsilon_0r)) 2pir dr `
Current per unit LENGTH will be
`I = (sigmalambda)/(epsilon_0)`
From Eq. (i), we get
`I = (2sigmapiepsilon_0)/(epsilon_0In (b//a)) v = (2pi sigma)/(In(b//a)) v`
Alternatively,
`I = V/R or R = int_(x=a)^(b) (i/sigma)(dx)/(2pix 1) = 1/(2pir) In (b/a)`
`:.I = (2pisigmaV)/(In (b//a))` .


Discussion

No Comment Found

Related InterviewSolutions