InterviewSolution
Saved Bookmarks
| 1. |
Two moles of a monatomic ideal gas undergo a cyclic process ABCDA as shown in figure. BCD is a semicircle. Find the efficiency of the cycle. |
|
Answer» Correct Answer - B Process AB is isochoric (V=constant). Hence, `DeltaW_(AB)=0` `DeltaW_(BCD)=p_0V_0+pi/2(p_0)(V_0/2)` `=(pi/4+1)p_0V_0` `DeltaW_(DA)=-1/2(p_0/2+p_0)(2V_0-V_0)` ` =-3/4p_0V_0` `DeltaU_(AB)=nC_VDeltaT=(2)(3/2R)(T_B-T_A)` `(n=2,C_V=3/2R)` `=3R((p_0V_0)/(2R)-(p_0V_0)/(4R))` `=3/4p_0V_0=DeltaQ_(AB)` `(T=(pV)/(nR))` `DeltaU_(BCD)=nC_VDeltaT=(2)(3/2R)(T_D-T_B)` `=(3R)((2p_0V_0)/(2R)-(p_0V_0)/(2R))=3/2p_0V_0` Hence, `DeltaQ_(BCD)=DeltaU_(BCD)+DeltaW_(BCD)` `(pi/4+5/2)p_0V_0` `DeltaU_(DA)=nC_VDeltaT` `=(2)(3/2R)(T_A-T_D)` `=(3R)((p_0V_0)/(4R)-(2p_0V_0)/(2R))` `=-9/4p_0V_0` `:.` `DeltaQ_(DA)=DeltaU_(DA)+DeltaW_(DA)` `=-9/4p_0V_0-3/4p_0V_0` `=-3p_0V_0` Net work done is, `W_(n et)=(pi/4+1-3/4)p_0V_0` `=1.04p_0V_0` and heat absorbed is `Q_(ab)=DeltaQ_(+ve)` `=(3/4+pi/4+5/2)p_0V_0=4.03p_0V_0` Hence, efficiency of the cycle is `eta=(W_(n et))/(Q_(ab))xx100` `=(1.04p_0V_0)/(4.03p_0V_0)xx100` `=25.8%` |
|