

InterviewSolution
Saved Bookmarks
1. |
Two moles of monatomic ideal gas is taken through a cyclic process shown on `P - T` diagram in Fig. Process `CA` is represented as `PT` = constant. If efficiency of given cyclic process is `1 - (x)/(12 1n 2 + 15)` then find `x`, |
Answer» For process `AB`, `T_(A) = 300 K, T_(B) = 600 K` `W = nR Delta T = nR (T_(B) - T_(A)) = 300 nT = 600 R` `Q = nC_(P) Delta T = 2 xx (5)/(2) R (300) = 1500 R` For process `BC`, `W = nRT 1n (V_(f))/(V_(i)) = nRT 1n (P_(i))/(P_(f))` `= nRT 1n 2 = 1200 1n 2` For process `CA`, `W = int PdV = int_(600)^(300) (K)/(T) (2 nRT)/(K) dT` `= - 2 nR (300) = - 1200 R` `Q = n C_(V) Delta T + W` `= 2 xx (3)/(2) R (-300) - 1200 R` `= - 900 R - 1200 R = - 2100 R` `eta = (600 R + 1200 R 1n - 1200 R)/(1500 R + 1200 R 1n 2)` `eta = 1 - (21)/(12 1n 2 + 15)` Comparing with given equation, `x = 21`. |
|