

InterviewSolution
1. |
Two opposite vertices of a square are (-1, 2) and (3, 2). Find the coordinates of other two vertices. |
Answer» The coordinates are A(-1, 2) and C(3, 2). Let the coordinates of the vertex B are (x, y) AB = BC Using distance formula = \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\) \(\sqrt{(x + 1)^2 + (y - 2)^2}\) = \(\sqrt{(x - 3)^2 + (y - 2)^2}\) On squaring both sides, we get (x + 1)2 + (y - 2)2 = (x - 3)2 + (y - 2)2 x2 + 2x + 1 + y2 - 4y + 4 = x2 - 6x + y2 - 4y + 4 x = 1 In ΔABC AB2 + BC2 = AC2 [Using Pythagoras theorem] 2AB2 = AC2 [Since AB = BC] 2[(x + 1)2 + (y - 2)2] = (3 + 1)2 + (2 - 2)2 2[x2 + 2x + 1 + y2 - 4y + 4] = 16 x2 + 2x + 1 + y2 - 4y + 4 = 8 x2 + 2x + y2 - 4y = 3 On substituting x = 1 1 + 2 x 1 + y2 - 4y = 3 y2 - 4y = 0 y(y - 4) = 0 y = 0, 4 Other coordinates are (1, 0) and (1, 4) |
|