InterviewSolution
Saved Bookmarks
| 1. |
Unit vectors `veca and vecb` ar perpendicular , and unit vector `vecc` is inclined at an angle `theta` to both `veca and vecb . If alpha veca + beta vecb + gamma (veca xx vecb)` then.A. `alpha = beta `B. `gamma^(2) = 1- 2alpha^(2)`C. `gamma^(2) =-cos 2 theta`D. `beta^(2) = (1+ cos 2theta)/2` |
|
Answer» Correct Answer - a,b,c,d Since, `veca, vecb, and vecc` are unit vectors inclined at an angle `theta` we have `|veca|=|vecb|=1 and cos theta = veca.vecc = vecb.vecc` Now, ` vecc = alpha veca + beta vecb + gamma (veca xx vecb)` ` Rightarrow veca.vecc=alpha(veca. veca)+beta(veca.vecb) +gamma{veca.(vecaxx vecb)}` `Rightarrow cos theta=alpha|veca|^(2) " " (therefore veca. vecb=0, veca. (vecaxxvecb) =0) = alpha` similarly, by taking dot product on both sides of (i) by `vecb " we get " beta =cos tehta` Again ` vecc= alpha veca + beta vecb + gamma (veca xx vecb) ` ` Rightarrow |vecc|^(2) = |alphaveca + beta vecb + gamma (veca xx vecb)` `=alpha^(2) |veca|^(2) +beta^(2) |vecb|^(2) +gamma^(2)|vecaxxvecb|^(2)` ` + 2alphabeta(veca .vecb) + 2alphagamma{veca. (vecaxxvecb)}` `+ 2 betagamma(vecb.{vecaxxvecb})` ` Rightarrow 1 = alpha^(2) +beta^(2) +gamma^(2) |vecaxxvecb|^(2)` ` = 2alpha^(2) + gamma^(2) {|veca|^(2) |vecb|^(2) sin^(2) pi//2}` `= 2alpha^(2) +gamma^(2) or alpha^(2)(1-gamma^(2))/2` But `alpha = beta = cos theta` `1=2alpha^(2) +gamma^(2) Rightarrow1-2cos^(2) theta-cos 2theta` ` beta^(2) (1-gamma^(2))/2 = (1+cos2theta)/2` |
|